实验室在多智能体强化学习算法研究上取得进展。相关研究成果以题为“Bridging Training and Execution via Dynamic Directed Graph-Based Communication in Cooperative Multi-Agent Systems”被CCF-A类人工智能顶级学术会议AAAI 2025录用。
多智能体系统需要有效的通信和理解智能体间的相互作用,以实现合作目标。现有方法缺乏动态通信机制,且过度依赖全局状态。为此,我们提出了基于Transformer的图坍缩网络(TGCNet)算法。TGCNet通过学习动态有向图的拓扑结构表示通信策略,并使用图坍缩网络近似全局状态,从而提升智能体的协作能力。实验结果表明,TGCNet在多个基于通信的多智能体强化学习基准中优于主流算法,消融实验验证了其动态图通信机制和图坍缩网络的有效性。
图 TGCNet的网络结构图
论文信息:Zhang Z, He B, Cheng B, et al. Bridging Training and Execution via Dynamic Directed Graph-Based Communication in Cooperative Multi-Agent Systems [C]//Proceedings of the 39th AAAI Conference on Artificial Intelligence. Philadelphia, PA, USA:Pennsylvania Convention Center, 2025.